Acceleration of polycystic kidney disease progression in cpk mice carrying a deletion in the homeodomain protein Cux1.
نویسندگان
چکیده
Polycystic kidney diseases (PKD) are inherited as autosomal dominant (ADPKD) or autosomal recessive (ARPKD) traits and are characterized by progressive enlargement of renal cysts. Aberrant cell proliferation is a key feature in the progression of PKD. Cux1 is a homeobox gene that is related to Drosophila cut and is the murine homolog of human CDP (CCAAT Displacement Protein). Cux1 represses the cyclin kinase inhibitors p21 and p27, and transgenic mice ectopically expressing Cux1 develop renal hyperplasia. However, Cux1 transgenic mice do not develop PKD. Here, we show that a 246 amino acid deletion in Cux1 accelerates PKD progression in cpk mice. Cystic kidneys isolated from 10-day-old cpk/Cux1 double mutant mice were significantly larger than kidneys from 10-day-old cpk mice. Moreover, renal function was significantly reduced in the Cux1 mutant cpk mice, compared with cpk mice. The mutant Cux1 protein was ectopically expressed in cyst-lining cells, where expression corresponded to increased cell proliferation and apoptosis, and a decrease in expression of the cyclin kinase inhibitors p27 and p21. While the mutant Cux1 protein altered PKD progression, kidneys from mice carrying the mutant Cux1 protein alone were phenotypically normal, suggesting the Cux1 mutation modifies PKD progression in cpk mice. During cell cycle progression, Cux1 is proteolytically processed by a nuclear isoform of the cysteine protease cathepsin-L. Analysis of the deleted sequences reveals that a cathepsin-L processing site in Cux1 is deleted. Moreover, nuclear cathepsin-L is significantly reduced in both human ADPKD cells and in Pkd1 null kidneys, corresponding to increased levels of Cux1 protein in the cystic cells and kidneys. These results suggest a mechanism in which reduced Cux1 processing by cathepsin-L results in the accumulation of Cux1, downregulation of p21/p27, and increased cell proliferation in PKD.
منابع مشابه
Deletion of ErbB4 accelerates polycystic kidney disease progression in cpk mice
ErbB4 is highly expressed in the cystic kidneys with polycystic kidney diseases. To investigate its potential role in cystogenesis, cpk mice carrying a heart-rescued ErbB4 deletion were generated. Accelerated cyst progression and renal function deterioration were noted as early as 10 days postnatally in cpk mice with ErbB4 deletion compared to cpk mice, as indicated by increased cystic index, h...
متن کاملCaspase-3 gene deletion prolongs survival in polycystic kidney disease.
Pan-caspase inhibition reduces tubular apoptosis and proliferation and slows progression of disease in a rat model of polycystic kidney disease (PKD). It is unknown, however, which specific caspases are involved in PKD progression. Because caspase-3 is a major mediator of apoptosis, its role in autosomal recessive PKD was determined. Mice with caspase-3 gene deletion were crossed with mice harb...
متن کاملIdentification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease
Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...
متن کاملCystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease.
The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the posi...
متن کاملMacrophages promote polycystic kidney disease progression
Renal M2-like macrophages have critical roles in tissue repair, stimulating tubule cell proliferation and, if they remain, fibrosis. M2-like macrophages have also been implicated in promoting cyst expansion in mouse models of autosomal dominant polycystic kidney disease (ADPKD). While renal macrophages have been documented in human ADPKD, there are no studies in autosomal recessive polycystic k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 6 شماره
صفحات -
تاریخ انتشار 2008